Abstract

Robotic navigation on land, through air, and in water is well researched; numerous robots have successfully demonstrated motion in these environments. However, one frontier for robotic locomotion remains largely unexplored—below ground. Subterranean navigation is simply hard to do, in part because the interaction forces of underground motion are higher than in air or water by orders of magnitude and because we lack for these interactions a robust fundamental physics understanding. We present and test three hypotheses, derived from biological observation and the physics of granular intrusion, and use the results to inform the design of our burrowing robot. These results reveal that (i) tip extension reduces total drag by an amount equal to the skin drag of the body, (ii) granular aeration via tip-based airflow reduces drag with a nonlinear dependence on depth and flow angle, and (iii) variation of the angle of the tip-based…

Read more…

Share.

Comments are closed.